Liouvillian Integration and Bernoulli Foliations

نویسنده

  • D. CERVEAU
چکیده

Analytic foliations in the 2-dimensional complex projective space with algebraic invariant curves are studied when the holonomy groups of these curves are solvable. It is shown that such a condition leads to the existence of a Liouville type first integral, and, under “generic” extra conditions, it is proven that these foliations can be defined by Bernoulli equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liouvillian First Integrals of Differential Equations

Liouvillian functions are functions that are built up from rational functions using exponentiation, integration, and algebraic functions. We show that if a system of differential equations has a generic solution that satisfies a liouvillian relation, that is, there is a liouvillian function of several variables vanishing on the curve defined by this solution, then the system has a liouvillian f...

متن کامل

Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation

In this paper, a new numerical method for solving the fractional Riccati differential  equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon  fractional-order Bernoulli functions approximations. First, the  fractional-order Bernoulli functions and  their properties are  presented. Then, an operational matrix of fractional order integration...

متن کامل

Bernoulli Wavelets Method for Solution of Fractional Differential Equations in a Large Interval

In this paper, Bernoulli wavelets are presented for solving (approximately) fractional differential equations in a large interval. Bernoulli wavelets operational matrix of fractional order integration is derived and utilized to reduce the fractional differential equations to system of algebraic equations. Numerical examples are carried out for various types of problems, including fractional Van...

متن کامل

Numerical solution of a class of nonlinear two-dimensional integral equations using Bernoulli polynomials

In this study, the Bernoulli polynomials are used to obtain an approximate solution of a class of nonlinear two-dimensional integral equations. To this aim, the operational matrices of integration and the product for Bernoulli polynomials are derived and utilized to reduce the considered problem to a system of nonlinear algebraic equations. Some examples are presented to illustrate the efficien...

متن کامل

Convolutions of Liouvillian Sequences

While Liouvillian sequences are closed under many operations, simple examples show that they are not closed under convolution, and the same goes for d’Alembertian sequences. Nevertheless, we show that d’Alembertian sequences are closed under convolution with rationally d’Alembertian sequences, and that Liouvillian sequences are closed under convolution with rationally Liouvillian sequences.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998